

Monotonic transformations and preferences

Given the utility functions $u(q_1, q_2) = (q_1 + 1)^{\frac{1}{3}}q_2$, $v(q_1, q_2) = 3 \ln(q_1 + 1) + \ln q_2$, and $w(q_1, q_2) = \ln(q_1 + 1)^{\frac{1}{6}} + \ln q_2^{\frac{1}{8}}$, show that those functions represent the same preferences.

Solution

It is known that the utility function, as a numerical representation of the order of preferences, is unique except for its monotonic transformations. Given the utility function $u(\cdot)$, the function $v(\cdot)$ is nothing more than $v(q_1, q_2) = \ln u$, with which it represents the same preference ordering as $u(\cdot)$ and thus gives rise to the same goods demands as $u(\cdot)$. In turn, the function $w(\cdot)$ can be written as

$$w = (q_1 + 1)^{\frac{1}{3}} q_2^{\frac{1}{3}} = \left[(q_1 + 1)^{\frac{1}{3}} q_2^{\frac{1}{3}} \right] = \exp \left\{ \ln \left[(q_1 + 1)^{\frac{1}{3}} q_2^{\frac{1}{3}} \right] \right\} = \exp \left\{ \frac{1}{3} [3 \ln(q_1 + 1) + \ln q_2] \right\} = \exp \left(\frac{1}{3} v \right).$$

$$z = (x/y)^3 - 2^y x^2 y + e^2$$

Since additionally $\frac{dw}{dv} = \frac{1}{3} \cdot e^{\frac{1}{3}v} > 0$, given that the exponential function is a growing function, w is a growing transformation of v . Hence, the demand functions derived from the order of preferences represented by w are the same as those derived from the function v . On the other hand, given $v = \ln u$, $w = e^{\frac{1}{3}v} = e^{\frac{1}{3}\ln u} = u^{\frac{1}{3}}$, thus the function w is also a monotonic transformation of u . Therefore, the demands resulting from the preferences represented by w will coincide with the derivatives of the preferences represented by u .

Lastly, the function z can be expressed as

$$z = \frac{\ln(q_1 + 1)^6 + \ln q_2^2}{8} = \frac{\ln [(q_1 + 1)^6 \cdot q_2^2]}{8} = \frac{3 \ln(q_1 + 1) + \ln q_2}{4}$$

And since $\frac{dz}{dv} = \frac{1}{4} > 0$, **it is also guaranteed that the demands arising from the function z will coincide with the demands from v , since the preference order represented by z is the same as that represented by v . Similarly, since $v = \ln u$, it follows that $z = \frac{1}{4} \ln u$, and the demands arising from the utility function z will be the same as those that derive from u .**